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An Efficient Correction Storage Scheme for Unsteady Flows

Jo-Soon Cheong, Youn J. Kim*
School of Mechanical Engineering, Sungkunkwan University

An efficient correction storage scheme on a structured grid is applied to a sequence of
approximate Jacobian systems arising at each time step from a linearization of the discrete
nonlinear system of equations, obtained by the implicit time discretization of the conservation
laws for unsteady fluid flows. The contribution of freezing the Jacobian matrix to computing
costs is investigated within the correction storage scheme. The performance of the procedure is
exhibited by measuring CPU time required to obtain a fully developed laminar vortex shedding
flow past a circular cylinder, and is compared with that of a collective iterative method on a
single grid. In addition, some computed results of the flow are presented in terms of some
functionals along with measured data. The computational test shows that the computing costs
may be saved in favor of the correction storage scheme with the frozen Jacobian matrix, to a
great extent.
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1. Introduction

The majority of flows in nature or technical
applications, suffering from some form of pertur­
bations, are essentially unsteady, e. g. the evolu­
tion with time of boundary layers, separation,
reattachment, vortex shedding and interaction in
turbomachinery blade rows, etc.. Such flow phe­
nomena may be induced either by external or self
excitation or by a combination of both excita­
tions. Vortex shedding from bluff bodies is a
typical unsteady phenomenon induced by self
excitation, while the sources of the unsteadiness
in turbomachinery blade rows are complex.

To date, the numerical solution of the conserva­
tion laws for fluid flows has, however, concen-
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trated largely on steady state problems because of
the constraints of computing costs. The evolution
of high performance computer resources now
somewhat enables us to look into the characteris­
tics of time evolution flows. The numerical simu­
lation of unsteady flows requires high accuracy in
time as well as in space. Unlike steady flow
problems, higher grid resolution is required to
capture the details of unsteady flows accurately
since the discretization errors coupled in space
and time increase with lapse of time.

Following the method of lines, the discretiza­
tion of the conservation laws in space first leads
to a nonlinear system of first order ordinary
differential equations, so-called semi-discrete rep­
resentation. With regard to the implicit time inte­
gration of the representation, a nonlinear system
of algebraic equations has to be iteratively solved
for time accurate solutions at each time cycle.

To overcome such difficulty in solving such a
nonlinear system arising at each implicit time
step, or to transform an explicit code for steady
flows present straightforwardly into a code for
unsteady ones, Jameson (1991) and Dailey et al.



126 Jo-Soon Cheong and Youn J. Kim

(1996) added an artificial time derivative to a
nonlinear system. They then solved the resulting
artificial time dependent system within the con­
text of a multigrid methodology (a full approxi­
mation storage scheme) with use of a psuedo­
explicit Runge-Kutta time stepping scheme (often
called the dual time stepping) as a smoother.
However, they discretized the convective spatial
derivative terms centrally, for implicit schemes
resulting in the coefficient-matrix that was not
good-conditioned to solve the linear systems of
equations with use of iterative methods. This
technique is widely in use for computation of
unsteady flows, for example, by Breuer et al.
(1993). However, this psuedo-time stepping tech­
nique also suffers a limitation on the artificial
time step size as in the case of real explicit time
stepping.

Implicit schemes also have been employed suc­
cessfully by many investigators for simulation of
unsteady flows. Rai (1989) and Jiang et al. (1995)
solved the Jacobian systems obtained by lineariza­
tion of a nonlinear system with use of an iterative
procedure, while Sheng et al. (1995), Pulliam
(1993) added an artificial time derivative to a
nonlinear system and then solved the resulting
time dependent system with aid of a non-iterative
implicit scheme for steady flows. They all attack­
ed the Jacobian systems in terms of an iterative,
approximate factorization or conjugate gradient­
type method on a single grid. However, a few
investigators have reported the application of the
multigrid method to the Jacobian systems for
simulation of unsteady flows.

The effectiveness of the implicit scheme
depends strongly on the efficiency of the linear
solver used for the Jacobian systems. The goal of
this article is in developing an efficient correction
storage scheme for solving the Jacobian systems
within an implicit time integration for simulating
unsteady flows. The difficulty in applying
structured meshes to complex configurations may
be considerably relieved by resorting to un­
structured meshes. However, the main question
appears to be the inherent efficiency limitations of
unstructured flow solvers, compared with
structured ones. The efficiency of a multigrid

method is strongly affected by the solution proce­
dure employed on a single grid, but playing the
role of a smoother in the multigrid context. It thus
appears to be evident that the multigrid method
on unstructured meshes is not so efficient as that
on structured ones. In the current work, the effi­
ciency of a correction storage scheme will be
evaluated on a structured grid.

Since the first order approximate Riemann
solver for an implicit operator in linearized form
provides a good-conditioned coefficient-matrix
for collective iterative methods, an iterative
method of some type also may be chosen to solve
the Jacobian systems. Another possibility is to
find the solution errors of the Jacobian systems,
obtained by performing a few iterations on the
finest grid, on coarser grids, known as the correc­
tion storage scheme, where computing costs are
much cheaper.

For the case of a modified Newton-Raphson
method in which the Jacobian matrix is not
updated and factorized at each Newton-Raphson
step, the Jacobian matrix evaluated once may be
reused during the linear iterative processes of
each time cycle. This would reduce the overall
computing time since, for the Jacobian matrix
evaluated once at the beginning, the splitting
matrix of the collective linear iterative method
used needs not to be factorized repeatedly. In
addition, the technique of freezing the Jacobian
matrix may be incorporated into the correction
storage scheme. In the current work, the effective­
ness of these techniques is tested to evaluate the
effect on computing costs. •

The test case chosen is the two-dimensional
unsteady laminar flow over a circular cylinder
that moves with some constant translational
velocity following an impulsive start from rest. As
computed results, following the presentation of
some numerical functionals for the symmetric and
asymmetric flows along with measured data, the
effectiveness of the correction storage scheme to
efficiently resolve unsteady flows are estimated
for the asymmetric flow through a comparison
with other methods.
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where

2. Mathematical Modeling

1~~ dV+1(re - r) .!!.d5=0 (I)

and the Fourier's law states for the heat flux
vector !1 by conduction through the control sur­

face

(5)LlV dQ + ~F(Q) . 5 i=0

dt i= - -

where Q is the cell-averaged value located at the
center of the cell, and fC Q) • 5 i is the
corresponding flux at each surface ~i of LlV. The
superscript i denotes the contravariant compo­
nent.

Since Q is located in the center of the cell, but
F( Q) at its surfaces, some interpolation (or
~xtrapolation) of the neighboring dependent vari­
ables must be performed to obtain the discrete
solution of Eq. (5). The flux tensor thus deter­
mined will be called the numerical flux tensor P
(Q). Introducing a unit vector s' with the same
direction as ~i and using the norm S' of!ii, then
Eq. (5) becomes

p=(r-l)[pE--f!:i • !:iJ, T=r&- (4)

The conservation laws of Eq. (I) are put into a
nondimensional form with reference values,
denoted with 00. Length is nondimensionalized

by L~, !:i by U~, p by p~, T by T~, t by L~, p
by p~u: and tl by ~. From here on, all the
physical variables are thus dimensionless except
for reference values, unless otherwise stated .

3. Numerical Formulation

Let the control volume V be divided into a
number of cells forming grids. Since Eq. (I) is
valid for any arbitrary control volume, it also
holds locally for each individual cell in a grid. By
the mean-value theorem, the conservation laws
for a cell with a volume of LlV, being not a
function of time t, become:

giving a relationship between the molecular ther­
mal conductivity). and the dynamic viscosity u,

assumed to be constant, namely Pr=O.72 as well.
The dependence of the viscosity tl on the static
temperature T is obtained from the Sutherland's
law.

For a thermally and calorically ideal gas with
the constant specific heat ratio r and the gas
constant R, the static pressure P and the static
temperature T are related to the equations of
state:

(3)!1=-).V'T

where V' is the gradient operator and the super­
script T the transpose. In this work, the flow is
assumed to be laminar. The Prandtl number,

Q=[:U]' re=[ pU~~PI l,
pE (pE+P)~

. [ 0 J. p= T .
= t- ~-q

In the above relations, the vector Q states for
the conservative variables at the current time t, i.
e. the mass density p, the momentum density P!:i
and the total internal energy density pE. and r
represent r the convective and the diffusive flux
contributions to the flux tensor f I and !:i are the
unit tensor and the velocity vector, respectively.
The convective flux tensor r depends only on
the vector Q, while the diffusive flux tensor
depends mainly on the gradients of Q.

For a fluid obeying the Newton's law and
Stokes's hypothesis for the bulk viscosity, an
expression for the molecular viscous' stress tensor

1 is given by

1=tl[v«+(V'!:iF-: j V' • ~I] (2)

The flow of a continuum is described by the
conservation laws for mass, momentum and
energy. Body forces are not taken into account
here. Considering a control volume V of interest
fixed in time and space, with the outward unit
vector !!:. being normal to the control volume
surface 5 surrounding the volume, in an absolute
frame of reference, the conservation laws in inte­
gral form read:
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(6)

where

(9)

(8)

The derivative is evaluated using the density
weighted average. An expansion wave is indicated
by a positive sign of the difference LItlc( ii) corre­
sponding to one of the two characteristic pressure
waves. The complete algorithm then becomes:

LIQ_={(Q--!lL)' !Iii+K for tlc(ii)>0 (10)
a Eq. (8) otherwise '

where

3.2 Time discretization
After evaluating the numerical flux vectors for

a sequence of cells in the grid used in the manner
outlined above, and to find the time accurate
numerical solution to Q(t) in Eq. (I), Eq. (6) has
to be discretized in time through the use of a
temporal difference scheme that approximates Q

K=min[ I, max[0, i
X (Q+-RL

) • S.ii

This. is a highly accurate state difference split­
ting scheme, preventing unphysical solutions as
known from the Roe's scheme (Harten et al.,
1983), but using its simple algebra for the differ­
ence split. The components of the diffusive flux

vector r .Ii are approximated by central differ­
ences.

LIQii={(q--qd'!Iii for tlc(ii)>0.
(9..- - QL) • !Iii for Ac( ii)~O

To prevent expansion shocks, the difference
LIAc( ii) in the propagation speed between the two
states R+ and Q- is calculated assuming a linear
variation between both states:

of sign of the actual propagation speed. As de­
scribed by Osher et al. (1982), there are six loca­
tions along the path in which such a change of
sign is possible.

Since the linear transformation to characteristic
variables is only applicable differences, the left
cell values (L) are chosen as a reference state at
each cell surface:

}i(Q)=F(Q*) • s'':r .s' (7)

where R* is the intermediate state vector at the
cell surface (Osher et al., 1982).

The intermediate state vector Q* is calculated
from the two states that are interpolated from the
two different sets of neighboring grid points, i. e.

R+= R+(.Q.L' QR' QR+l) and Q-= Q-(.Q.L-Io QL'
QR). The subscripts Land R denote the values
from the left (L) and right (R) cells sharing s:
The interpolation is carried out using the limiter
function after van Albada (1982). It is done in
characteristic variables Ra, which are those com­
ponents of the vector Q, to which known propa­
gation speeds Ac( ii) can be related. They are
generated by a proper choice of base vectors !Ia
and /I.a. These base vectors and the propagation
speeds are evaluated using the density weighted
average proposed by Roe (1981). The subscript ii
and the superscript ii denote the covariant and
the contravariant characteristic components,
respectively.

The differences between the two states Q+ and
!l- are regarded as waves propagating in different
directions corresponding to their propagation
speeds. The state vector R*, needed to calculate
the flux vector at a cell surface, is composed of
those wave components, which propagate towards
the cell surface. The intermediate- state may be

found by following a path connecting the two
states Q+ and Q-, and by looking for the change

3.1 Evaluation of numerical fluxes
The scheme used for evaluating the numerical

flux vector 1 i(Q) is based on the state difference
splitting of the form

LIV dQ +~}i(Q)Si=O,dt i --

where li( Q)= ftQ) • s.i is called the numerical
flux vector.

Eq. (6) is a form of the finite volume method
for the conservation laws. The accuracy of the
vector Q depends largely on the quality of the
evaluation scheme for the numerical flux vector
1 i(Q). An evaluation scheme used here for the
numerical flux function will be briefly described
in the following.
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(t) at discrete times. A general linear multi-step
method to solve Eq. (6) takes the form

~ajQn+j+ALi:.8j2:P(Qn+J)Si=O, (II)
j=O - LlV j=O j - -

where an approximation Qn+m to Q(tn+m), a

notation for the exact solution of Eq. (6) at the
current discrete time t":", is being sought. Llt
denotes a constant time step size, i. e. Llt = t n+m

- tn+m- l, and n denotes the discrete time index
(n=O, I, 2, ... ). This method is called am-step

method (m=l, 2, ... ), if jaol+l.8ol >0. Thecoeffi­
cients a, and .8j are fixed for a given method. A
scheme given by Eq. (II) is called explicit if .8m =
0, and implicit otherwise.

For implicit schemes (.8m=l=O), a nonlinear sys­
tem of equations of the form

(12)

solved through the use of a direct or indirect
method. However, the exact evaluation of the
Jacobian is seldom the case in practice, and
furthermore involves large storage. The solution
procedure taken in the current work is based on
the concept of defect correction scheme for non­
linear systems after Auzinger (1987). Applying
the scheme to Eq. (12) and dropping the discrete
time index n + m for simplicity results in

LlV amQv+I- N(Qv+I)=N(QV)- N(QV) (13)
Llt - - - -

where N(Q) is an approximation to N( Q), and II

the nonlinear iterative index (11=0, I, 2, ... ).
When this process converges, it provides Qn+m.

The convergence property depends on the quality
of N(Q).

Linearizing Eq. (13) by the Taylor series
expansion of order directly about QV yields

with

N( Qn+m) = _ LlV Y:1
ajQn+j

- Llt j=O -

- ~.8j2:1i(Qn+J)Si
j=O i - -

(14)

has to be solved for Qn+m at each time step. The
local accuracy of Qn;;;; is determined by the order
of the temporal difference scheme used. The three
-point backward scheme (m=2, ll2= 1.5, al=

-2.0, ao=0.5, .82= 1.0, .80=.81 =0) used here gives
the local accuracy of second order. By contrast,
the local accuracy of the backward Euler scheme

(m=l, al=-ao=l, .81=1, .80=0), frequently
used for steady flow problems, is of first order.

At the beginning of computation (t = ndt=0),
a complete description of initial flow field Q(tO)
is needed at all the cells of the grid used. For a
m-step method(m~2),the flow fields at previous
time levels m-l::;;: n::;;:Oare additionally required,
for which a (m-l) step method is employed.

4. Solution Procedure

Since Qn+m is determined only by the right
hand side of Eq. (14), and the linearization error
vanishes if this iterative process converges, i. e.
LlQv:::::0, this iterative process is fully conservative
in time. Such a conservative property is necessary
for unsteady flows in which time accurate solu­
tions are of interest. For the flux Jacobians on the
left hand side of Eq. (14), the first order flux
difference splitting after Roe (1981) is employed.
The first order differencing of the convective flux
function enters more diffusion acting on the resid­
ual than higher order differencing, thus enhancing
stability.

The control volume under consideration con­
sists of different types of boundaries, and appro­
priate conditions are thus needed to solve Eq.
(12). All the boundary conditions used here take

the form

with a being a physical quantity or its extrapola­
tion function. To make Eq. (IS) consistent with
Eq. (14), the linearization of Eq. (IS) is made

The choice made for attacking Eq. (12) at each
time step has a profound effect on the efficiency of
unsteady flow simulations. A well known method
for attacking this problem is the Newton-Raph­
son method in which the Jacobian system is

a(Q)=atarget (15)
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oa(QU) l1Q-u -UoQu _ =atarget-a(Q ) (16)

Combining Eqs. (14) and (16) yields a vector
equation of the form

(17)

QII+1 = QU +S'l1Q" and

[A] =[L] + [D] + [U],

where [D] is the block-diagonal of [A], [L]
and [U] are strictly lower and upper triangular
matrices, respectively.

with

is used as a predictor. The convergence criterion
of the iterative process of Eq. (17) adopted in this
work relies on the root mean square (RMS) of the
residual RHS(Q"). The next time stepping is then
tackled when a value ofRMS meets a specified
error of tolerance.

A technique for improving the overall effi­
ciency of the Newton-Raphson method is to
construct and to factorize the Jacobian matrix
once at the beginning of the Newton-Raphson
iteration, and thus the matrix factorized once is
used repeatedly. Although this technique may
decrease the rate of convergence, it increases a
certain measure of efficiency when the Jacobian
matrix is not changing rapidly. Such an idea
would be applicable to the process of Eq. (17),
resulting in

(22)

[K] U aQ"= RHS(Q") - [A] "l1Q"'"
= res(l1Qu,,,) - (21)

l1QU,J<+1 = aQ"+ l1Qu,,,,

where x is the linear iteration index (x = I, 2, ... ),
res(l1Q"''') the defect and aQ" the correction.

Since we are interested ~nly in the overall
efficiency for finding a vector QU(:::::: Qn+m) satisfy­
ing RHS(QU)::::::O at every time step, it is not
necessary to solve Eq. (17) at every iteration 1/.

We only seek to obtain an approximation of l1Qu
yielding the best nonlinear convergence, so-a
question arises how to terminate the iterative
process of Eq. (21) for a satisfactory nonlinear
convergence rate. In this work, the iterative proc­
ess is thus stopped at every iteration II when
l1Qu,,, satisfies

with

4.1 Defect correction scheme
The exact solution of the Jacobian system of

Eq. (17) at each 1/ in terms of a direct method
gives rise to very costly arithmetic operations and
high storage requirements, and would not neces­
sarily yield a high efficiency. Therefore, it seems
reasonable to solve the system iteratively because
the coefficient-matrix [A] is good-conditioned
for iterative methods requiring lower core mem­
ory. The majority of iterative approaches taken in
practice for linear systems are based on the defect
and the correction.

Suppose there exist a nonsingular matrix [K] U

that is an approximation to [A] u, but unlike
[A] u, readily invertible, the linear system Eq.
(17) is then clearly equivalent to

[K] 111Q" = ([K] U - [A] l)l1Q"+ RHS( QU)
(20)

that leads to the iterative defectcorrection scheme

( 19)

(18)

[A] l=ol1Q" = RHS( QII)

with

QHl=QU+S'l1QU,

where S'E (0, I] is the step size length that may be
a fixed value or chosen adaptively to minimize
l1Qu rapidly, thus ensuring convergence. The
vector RHS(QU) represents the residual that
vanishes at each time step if this iterative process
converges. Eq. (17) stands for a sequence of linear
systems of equations, with coefficient-matrix [A]
being block-structured and asymmetric, to be
solved at each time step, and the solution of
which often makes up most of the work involved
in the determination of QU(:::::: QnHI) satisfying
RHS(QU)::::::O.

The computing costs of the iterative process of
Eq. (17) depend greatly on the quality of the
initial guess Qu=o. To provide a good initial guess
at each time step, an implicit formula of the form
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where ¢E [0, 1) is a forcing factor that is used to

control the level of the solution accuracy to Eq.
(17).

The forcing vector ¢ offers a trade-off between

the accuracy with which the linear system of Eq.
(17) is solved and the amount of the work at every

nonlinear iteration 1/. The question is what level
of accuracy is required to preserve the optimal

nonlinear convergence. The choice of ¢ depends
on different factors, such as the time stepping

scheme used, form of the implicit operator, time

step size ill, step size length S'and the characteris­
tics of flows under consideration.

The choice of the matrix [K] lI, called the

splitting matrix, determines a linear iterative
procedure. The linear solver used in this work is

the incomplete point factorization taking the form
of the splitting matrix

[K] lI=([L] II+ [Do]lI)[Dol] lI([Do] II
+ [U] lI) (23)

where [Do] is also a block-diagonal matrix. The

exact evaluation of [Do] to satisfy ([A] - [K]) is
equivalent to a complete factorization. The split­
ting matrix of the incomplete factorization

method requires to satisfy the block-diagonal of

([A] - [K]) is equal to

[Do]lI= [D] II-b/ockdiagona/([L] II
[Dol] -r U] lI) (24)

Setting [Do]II = [D] lI, the splitting matrix of
Eq. (24) becomes that of the symmetric point

Gauss-Seidel method. The evaluation and factor­
ization of [Do] II are carried out once at the
beginning of the process ofEq. (21) because [All]
remains unchanged during the process. When,
moreover, using the frozen Jacobian matrix ofEq.

(19), the block-diagonal [Do]II is factorized once
at the beginning of the iterative process of Eq.
(19) since [A] lI=O remains unchanged for each

time step. This incomplete point factorization
scheme is taken advantage of as a smoother in the

correction storage scheme that will be described
in the following.

4.2 Correction storage scheme
The multigrid technique proved to be one of

the most effective methods for accelerating con­

vergence of steady flow solvers. This iterative

multigrid method was originally developed (Bran­
dt, 1977) to solve the discrete form of elliptic

differential equations, for which conventional

iterative methods are known to converge rapidly
for a first few iterations and very slowly there­

after. Fourier analysis of the error reduction
process (Brandt, 1977) shows that usual iterative

methods are efficient in smoothing out errors of
wavelengths comparable to the grid spacing, but
are insufficient in liquidating long wavelength

components. Thus the process of annihilating
long wave errors is characterized by a slow rate of
convergence.

To realize the fact that a wavelength is longer
relative to a fine mesh than relative to a coarse

mesh, the multi grid method makes use of different
grids to remove different wavelength errors. Con­

sequently, the multigrid technique cycles between
coarser and finer grids until all the wavelength
errors are appropriately smoothed out. This proc­

ess greatly speeds up the convergence of usual
iterative methods. Moreover, solving on coarser
grids requires far less computational effort, since
the grid points are fewer.

This multigrid idea may be applied to the
solution of a form of system of algebraic equa­

tions arising at each implicit time stepping. With
multigrid methods, the computation is conducted

on a sequence of grids G« where /=1,2,3, ... , L,

with 1= L representing the finest grid on which
the desired solution is being sought, and the grids
become coarser as the level of I smaller. The

coarser grids are formed by eliminating every
other grid line in each direction on the previous

finer grid.
Such a multigrid idea may be applied directly

to the nonlinear system of Eq. (12) at each time

step (full approximate storage scheme). Instead,
the multigrid method taken in this work is the
correction storage scheme applied indirectly to a

sequence of linear systems with the frozen
Jacobian matrix ofEq. (19) to solve the nonlinear
system of Eq. (12) under the boundary conditions
of Eq. (15).

Let
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and

and the transfer of '£1-1 from CI-I to CI is perfor­
med with the aid of a linear interpolation:

(31)

(30)

dependent. In this work, the incomplete point

factorization method described above is made use
of as a smoothing scheme. The coefficient-matrix

[AJ I on the coarse grid CI( I <L) is generated
approximately through the injection of Qr+~Io to
the implicit operator of Eq. (14). The construc­

tion of the coefficient-matrix [AJ r and the block
-diagonal matrix [DoJ /0 and the factorization of

[DoJ 1 are performed only once on each grid CI
for a time step, thus the factorized matrix is reused

repeatedly. Only one V-cycle with L=2 and a
smoothing iteration before restriction and after

interpolation, respectively, is carried out because
the iterative process of Eq. (19) does not require
a high accurate linear solution at each nonlinear

iteration 1/.

With regard to the transfer operator If-I the

full weighting is used, but the injection at bound­

aries:

(25)

with

[AJ r~2= [AJ v~o, !i1~L=L1Qv,
rhs(!iI~L) = RHS( QV)

denotes a linear system on C I and Kf/d an

approximation of !iI, obtained through a few

iterations on C/. Then the solution error ~I=!il

- sr. called the correction, satisfies the follow­
ing relationship:

[AJr~o~l=rhs(!il) - [AJr~oKf ld = res(~I) (26)

In the correction storage scheme, an estimate of

iii is obtained by solving the coarse grid system

[AJ r~P!!.I-I==If-I res(!!.a= rhs(!!.I-I) (27)

on grid Gi-, and interpolating its approximation
to CI , where If-I is a transfer operator for the

residual res(!!.I) from CI to CI-I.
Since solving the fine-grid system of Eq. (25)

with an arbitrary initial guess is equivalent to
solving the corresponding residual system of Eq.

(26) with the initial guess !!.I=O, it is thus desir­
able to initiate the iteration on the coarse-grid

system of Eq. (27) with the initial guess !!.l-l =0.
An approximation '£I-i to the solution of Eq.
(27), obtained through a few iterations on CI-I, is

transferred to grid C/o and then it comes to

(29)

5. Results and Discussion

The test case chosen is the two-dimensional

unsteady laminar flow of an ideal gas past a

circular cylinder of diameter L"" that moves with

a constant velocity of U"" following an impulsive
start in the direction e= 7( at time t =0 from rest.

(32)[
121]

Ii-I'£l-l = ~ 2 4 2 '£1-1
I 2 I

The correction storage scheme described until
now is limited to linear problems because the
relationship of Eq. (26) is valid only for such

problems. By contrast, since the full approximate

storage scheme approximates the solution !il-I=
KI-I+!!.I-I on CI-I> this scheme is applicable
independent of linearity, but slightly more expen­
sive when applying to linear problems.

(28)

where Ii-I denotes a transfer operator for '£1 from

Cl-l to CI' On C/o some iterations are initiated
with the better approximation Kreul on Eq. (25).
The step length factor

(rhs( e1-1), e1-1)
(LJi ([AJr-f '£1-1> '£1-1)

is chosen so that the estimate '£1 is improved
(Hackbusch et al., 1989).

This process is recursive. If convergence slows

down for Eq. (27), or C 1- I is large, res(!!.l-l) is
then transferred to C I- Z, etc.. On en, one solves
the coarse grid system either directly or iteratively
until its solution is sufficiently approximated.
This schedule for the grids in the order in which
they are visited is called the V-cycle,

The choice of an iterative smoothing scheme

plays a crucial role of the effectiveness of the
multigrid technique, but somewhat problem
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Fig. 1 Dimensional geometry of the problem

The impulsive motion is modeled with an abrupt
change of Reynolds number of a flow past the
cylinder at rest. Therefore, the translational veloc­
ity U; of the cylinder corresponds to a uniform
flow at infinity in the direction 8=0, sketched in
Fig. 1.

The characteristics of such flow are well known
from measurements (Bouard et al., 1980; Roshko,
1953). For a range of reference Reynolds numbers

6 ~Reao~ 40(Reao=paoUaoLao/J1.ao), the flow
reaches a steady state, with a pair of symmetric
vortices at the rear of the cylinder. On the other
hand, at higher Reynolds numbers stable symmet­
ric flow exists only for a relatively short period of
time, followed by a periodic vortex shedding
flow, transforming into the so-called von Karman
vortex street.

At very low local Mach numbers (Ma<{ I), the
change in density is negligible. The flow under
consideration here is thus assumed to meet the
incompressible conditions reasonably, under
which computed results can be compared with the
measurements present. Throughout the work,
computations were done for a reference Mach
number of Maao=O.l on a 85 X 235 a-grid with
clustering of the grid points near the surface of the
cylinder and in the wake region.

The minimum grid spacing at the wall is 0.1%

of Lao. The time integration was made by means
of the three-point backward scheme of second
order accuracy. The time step size LIt and the step
length factor 5' are limited due to the nonlinear
convergence problem, and thus the maximum
values to be allowed, LIt=O.OI and 5'=0.65, are
taken for all the computations. Along with the
time step size LIt, the size of S' depends on the
Reynolds number Reao, the Mach number Ma«

where the first and the second terms of the two
Eqs. (33) and (34) correspond to the contribu­
tions of the static pressure and the skin friction
forces, respectively.

Immediately after impulsive start, vortices are
created on the surface of the cylinder to meet the
no-slip conditions. The integrals of Eqs. (33) and
(34) are numerically evaluated through the use of
the trapezoidal rule. The periodicity of vortex
shedding is expressed by the Strouhal number

(Str=l/T), where T is the period of vortex
shedding.

1
2~ 12~

CD = - Pw cosed8+-'!:.-R e: sin8d8,
o e; 0

(33)

1
2~ 12~

CL=- Pw sin8d8--'!:.-R ~w cosiidi),
o eao 0

(34)

and the grid used, etc..

For initial conditions at t =0, the analytic
solution for incompressible potential flow was
imposed on the entire flow field. There are three
different types of boundary conditions; inflow,
outflow and solid surface. On the solid surface,
the no-slip, the static pressure and temperature of
zero order were applied. At the outflow, the mass
density was kept constant, the momentum den­
sities and the total temperature were extrapolated
from the interior. At the inflow, the total tempera­
ture and the total pressure, and a momentum
density were imposed, the other momentum den­
sity was extrapolated. At each time step, computa­
tions were carried out until a value of RMS for
RHS(QV) in Eq. (19) fell below a designated
value of 10-6

, which required 1I~3-4 per time
step. The solution thus at each time step obtained
was considered as accurate enough, and then the
next time stepping was tackled.

The important functionals for the flow past a
cylinder are the time evolutions of forces exerted
by the fluid on the cylinder. The drag coefficient
CD and the lift coefficient CL at some instant in
time t are obtained by integrating the wall pres­

sure Pw and the wall vorticity ~w(~=au/ay-all/

ax) around the cylinder surface:

x
u""--_
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(a) Re~=550 (b) Re~=3000

Fig. 2 Time evolution of the main closed wake length

5.1.2 Vortex shedding
For a Reynolds number above Re..=40, after a

certain lapse of time following the initial symmet­
ric phase, an arrangement of vortices are alterna­
tively shed from the rear of the cylinder. The
vortices thus separated are convected and diffused
in the wake, evolving toward a periodic configu­
ration, the so-called von Karman vortex street.

A way to generate a vortex shedding flow
within a reasonable time is to impose some artifi­
cial perturbation on the flow field (Lecointe et aI.,
1984; Patel, 1978); the destabilization of the flow
is triggered by rotating the cylinder for a period

Fig.4 Flow structure for Re..=3000 at t=2.5

discrepancy could be attributed to the initial
conditions (Loc et al., 1985), for which an incom­
pressible potential flow field was imposed here.
Figure 4 shows a good agreement of the flow field
in the half wake, depicted with the computed
streamlines and the experimental pathlines for at

Re..=3ooo at t=2.5.

..,.

,..,--..,.....---,-------.,...--.,------::---....,

.,..'+--...;.....---T---- --O-_-+-_---+_~...

i
I

Fig. 3 Time evolution of the radial velocity on the
symmetry axis for Re~=3000

5.1 Flow development

5.1.1 Flow at initial phase
The flow development with time at the initial

stage 0::;;: t $; 3 is first presented along with the
comparison with measurements of Bouard et al,
(1980). The time evolutions of the main closed
wake lengths at Re..=550 and 3000 are given in
Figs. 2(a) and 2(b). The numerical predictions
agree relatively well with the measured data.

As shown in Fig. 3, for Re..=3ooo, the time
evolutions of the radial velocity distributions on
the symmetry axis behind the cylinder are plotted
and compared with the measured data and show
a reasonable agreement. The negative values of
velocity mean the reversal flow in the primary
wake, the existence of values of velocity modulus
greater than can be shown. The computed results
somewhat differ from the measured data. This
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Fig.5 Time evolution of the lift and the drag coeffi­
cients for Re.;> 1000

of time in the clockwise and then in the counter­
clockwise directions.

In the present work also, only a fully developed
alternating vortex shedding flow with some per­
iodicity are of interest, an artificial perturbation is
thus introduced in the flow field in the following
way:

uw={0.15 for i.s-c t s: 1.75
-0.25 for 1.75< t<2.5 (35)

where uw is the circumferential velocity of the
surface of the cylinder. The present computation

was made for Re;= Ioaup to t = 30 at which time
a periodic vortex shedding flow is fully devel­
oped.

Figure 5 describes the time evolutions of the lift
and the drag coefficients. The periodic properties
of the flow can clearly be observed by the time
evolution of the lift coefficient. The period of the
oscillations is found to be 4.473, resulting in the
Strouhal number Str equal about 0.22. This
result agrees very well with the scattered experi­
mental values in the range of 0.21-0.22 reported
by Roshko (1953) although the present computa­
tion predicts a slightly higher Strouhal number.
The time evolution of the drag, coefficient, essen­
tially a flow loss, is not alternating but periodic.
The frequency of the oscillations of the drag
coefficient is found to be twice that of those of the
lift coefficient. This is due to the contributions of
the upper and the lower alternating vortices to the
drag force.

Let t" some instant in time at which the lift

Fig. 6 Instantaneous streamlinesat t = t *+ T / 4 for
Re~=1000

coefficient is maximal. The maximal positive lift
coefficient is produced due to a large vortex of a
low pressure field attached to the upper side of
the cylinder at t=t*, the maximal drag coeffi­
cient as well. With lapse of time the vortex is shed
from the cylinder, forming the upper vortex of the
von Karman vortex street. The lift coefficient is
zero and the drag coefficient is minimal at t = t*
+ T / 4. At t = t *+ T /2 another large vortex,
opposite to that at the upper side in rotation, is
again created at the lower side of the cylinder,
reversing the direction of the lift coefficient. This
vortex is also swept into the wake region, forming
the lower vortex of the von Karman vortex street.

In Fig. 6, a flow state at t=t*+ T/4 is depicted
by the instantaneous streamlines, and is a mirror
image of that at t=t*+3T/4.

5.2 Comparison of solution procedures
To make a comparison of the effectiveness for

different solution procedures, the alternating vor­
tex shedding flow at Re;»: loa was considered as
a test example. The comparison was made up to t
=30 at which time the periodic alternating vortex
shedding flow was fully developed. The local
computational cost differs at every time step since
the flow structure changes with lapse of time.
Thus, the total computational labor for a period
of time does not correspond to the local effort
along the time step times the number of time
steps. For consistent comparison, the incomplete
point factorization method was taken as a linear
solver with a stopping criterion on the single grid
and as a smoother on the multigrid. To our
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Fig. 7 Time evolution of RMS for the unsteady
numerical flux balance

Fig. 9 Single grid method with freezing Jacobian
matrix.
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Fig. 8 Single grid method without freezing Jacobian
matrix.

Fig. 10 Correction storage method with freezing
Jacobian matrix.

experience, ¢=O.l was the best choice for the
single grid in the test case. In each computation,
the root mean square (RMS) for the unsteady
numerical flux balance is plotted versus comput­
ing cost. given in central processing unit (CPU)
seconds (S) on one processor of a HP9000jK400
parallel computer.

Figure 7 shows the time evolution of RMS for
the unsteady numerical flux balance, the second
term of Eq. (6), which vanishes at steady state. It

follows that after a lapse of time following the
initial phase, the flow is strongly unsteady. Fig­
ures 8-10 indicate the behavior of RMS for the
numerical flux balance versus computing time for
different solution procedures. On the single grid
first, by comparison of computing costs in Figs. 8
and 9, it can be shown that computing costs may
be saved in terms of the frozen Jacobian matrix,
to a great extent. Only once at the beginning of

the iterative process of Eq. (19) at each time step,
the Jacobain matrix is evaluated and the diagonal
associated with the incomplete point factorization
method is factorized. Then the resulting matrix is
reused during the solution process of a sequence
of linear systems. No difficulties encountered with
the frozen Jacobian matrix were experienced in
the nonlinear convergence when using the values
of LIt, S' and Q"~O aforementioned above.

For the case of multigrid method, in addition,
the effect of freezing the Jacobian matrix on the
overall efficiency Was checked up. The nonlinear
process of Eq. (19) used in the current work does
not checked up the efficiency. The nonlinear
iterative require highly accurate linear solutions.
Thus, only a coarse grid was made use of approxi­

.mately to obtain solution errors generated by
initiating an iteration on the fine grid. One of the
major efforts in the correction storage scheme is



An Efficient Correction Storage Scheme for Unsteady Flows 137

to construct the coefficient-matrix and factorize
the diagonal associated with the smoothing iter­
ative method on the coarse grid. When the frozen
Jacobian matrix on the coarse grid is used, a
marked improvement in computational efficiency
could be obtained. By comparison of the solution
procedures with the frozen Jacobian matrix on
the single grid and the multigrid, from Figs. 9 and
10, it follows that by 20% of computing time
required to obtain a fully developed vortex shed­
ding flow can be saved by means of the correction
storage scheme. To conclude, the correction stor­
age scheme with the frozen Jacobian matrix is
much more efficient when compared with the
solution procedures without freezing the Jacobian
matrix on the single grid.

6. Conclusions

A correction storage scheme for solving a
sequence of approximate Jacobian systems arising
at each implicit time step were implemented and
tested for a unsteady flow past a circular cylinder.

The code for the simulation of unsteady flow
was validated against the measured data present.
In the test case, the computed results showed a
reasonable agreement with the experiments at the
fully developed periodic stage as well as the
initial symmetric stage.

With regard to the effectiveness of the solution
procedures tested here, computing costs may be
saved in favor of freezing the Jacobian matrix on
the single grid, to a great extent. Furthermore,
through the combination of the correction storage
scheme with the frozen Jacobian matrix a certain
measure of computational efficiency could be
acquired by comparison with the single grid
method.
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